Robust Detection for Autonomous Elevator Boarding Using a Mobile Manipulator
Seungyoun Shin, Joon Hyung Lee, Junhyug Noh and 1 more author
In ACPR 2023:Pattern Recognition
Indoor robots are becoming increasingly prevalent across a range of sectors, but the challenge of navigating multi-level structures through elevators remains largely uncharted. For a robot to operate successfully, it’s pivotal to have an accurate perception of elevator states. This paper presents a robust robotic system, tailored to interact adeptly with elevators by discerning their status, actuating buttons, and boarding seamlessly. Given the inherent issues of class imbalance and limited data, we utilize the YOLOv7 model and adopt specific strategies to counteract the potential decline in object detection performance. Our method effectively confronts the class imbalance and label dependency observed in real-world datasets, Our method effectively confronts the class imbalance and label dependency observed in real-world datasets, offering a promising approach to improve indoor robotic navigation systems.